Интерфейс RS-485 основан на стандарте EIA RS-422/RS-485. К сожалению, полноценного эквивалентного российского стандарта не существует, поэтому есть некоторые рекомендации по применению интерфейса RS-485.
Традиционный интерфейс RS-232 в промышленной автоматизации применяется достаточно редко. Сигналы этого интерфейса передаются перепадами напряжения величиной (3…15) В, поэтому длина линии связи RS-232, как правило, ограничена расстоянием в несколько метров из-за низкой помехоустойчивости. Интерфейс RS-232 имеется в каждом PC – совместимом компьютере, где используется в основном для подключения манипулятора типа “мышь”, модема, и реже – для передачи данных на небольшое расстояние из одного компьютера в другой. Передача производится последовательно, пословно, каждое слово длиной (5…8) бит предваряют стартовым битом и заканчивают необязательным битом четности и стоп-битами. Интерфейс RS-232 принципиально не позволяет создавать сети, так как соединяет только 2 устройства (так называемое соединение “точка - точка”).
Сигналы интерфейса RS-485 передаются дифференциальными перепадами напряжения величиной (0,2…8) В, что обеспечивает высокую помехоустойчивость и общую длину линии связи до 1 км (и более с использованием специальных устройств – повторителей). Кроме того, интерфейс RS-485 позволяет создавать сети путем параллельного подключения многих устройств к одной физической линии (так называемая “мультиплексная шина”).
Устройства, подключаемые к интерфейсу RS-485, характеризуются важным параметром по входу приемопередатчика: “единица нагрузки” (“Unit Load” - UL). По стандарту в сети допускается использование до 32 единиц нагрузки, т.е. до 32 устройств, каждое из которых нагружает линию в 1 UL. В настоящее время существуют микросхемы приемопередатчиков с характеристикой менее 1 UL, например - 0,25 UL. В этом случае количество физически подключенных к линии устройств можно увеличить, но суммарное количество UL в одной линии не должно превышать 32.
В качестве линии связи используется экранированная витая пара с волновым сопротивлением ≈120 Ом. Для защиты от помех экран (оплетка) витой пары заземляется в любой точке, но только один раз: это исключает протекание больших токов по экрану из-за неравенства потенциалов “земли”. Выбор точки, в которой следует заземлять кабель, не регламентируется стандартом, но, как правило, экран линии связи заземляют на одном из ее концов.
Качество витой пары оказывает большое влияние на дальность связи и максимальную скорость обмена в линии. Существуют специальные методики расчета допустимых скоростей обмена и максимальной длины линии связи, основанные на паспортных параметрах кабеля (волновое сопротивление, погонная емкость, активное сопротивление) и микросхем приемопередатчиков (допустимые искажения фронта сигнала). Но на относительно низких скоростях обмена (до 19200 бит/с) основное влияние на допустимую длину линии связи оказывает активное сопротивление кабеля. Опытным путем установлено, что на расстояниях до 600 м допускается использовать кабель с медной жилой сечением 0,35 мм (например, кабель КММ 2х0,35), на большие расстояния сечение кабеля необходимо пропорционально увеличить. Этот эмпирический результат хорошо согласуется с результатами, полученными расчетными методами.
Даже для скоростей обмена порядка 19200 бит/с кабель уже можно считать длинной линией, а любая длинная линия для исключения помех от отраженного сигнала должна быть согласована на концах. Для согласования используются резисторы сопротивлением 120 Ом (точнее, с сопротивлением, равным волновому сопротивлению кабеля, но, как правило, используемые витые пары имеют волновое сопротивление около 120 Ом и точно подбирать резистор нет необходимости) и мощностью не менее 0,25 Вт – так называемый “терминатор”. Терминаторы устанавливаются на обоих концах линии связи, между контактами A и B витой пары.
В сетях RS-485 часто наблюдается состояние, когда все подключенные к сети устройства находятся в пассивном состоянии, т.е. в сети отсутствует передача и все приемопередатчики “слушают” сеть. В этом случае приемопередатчики не могут корректно распознать никакого устойчивого логического состояния в линии, а непосредственно после передачи все приемопередатчики распознают в линии состояние, соответствующее последнему переданному биту, что эквивалентно помехе в линии связи. На эту проблему не так часто обращают внимания, борясь с ее последствиями программными методами, но тем не менее решить ее аппаратно несложно. Достаточно с помощью специальных цепей смещения создать в линии потенциал, эквивалентный состоянию отсутствия передачи (так называемое состояние “MARK”: передатчик включен, но передача не ведется). Цепи смещения реализованы в преобразователе ПИ-485/232, для их подключения достаточно установить 2 перемычки между контактами ‘+V’ и ‘+V’, ‘-V’ и ‘-V’ соответственно. Для корректной работы цепей смещения необходимо наличие двух терминаторов в линии связи.
В сети RS-485 возможна конфликтная ситуация, когда 2 и более устройства начинают передачу одновременно. Это происходит в следующих случаях:
- в момент включения питания из-за переходных процессов устройства кратковременно могут находится в режиме передачи;
- одно или более из устройств неисправно;
- некорректно используется так называемый “мультимастерный” протокол, когда инициаторами обмена могут быть несколько устройств.
В первых двух случаях быстро устранить конфликт невозможно, что теоретически может привести к перегреву и выходу из строя приемопередатчиков RS-485. К счастью, такая ситуация предусмотрена стандартом и дополнительная защита приемопередатчика обычно не требуется.
Соедините устройства, используя экранированный кабель типа «витая пара» с волновым сопротивлением 120 Ом по линейной топологии. В крайних точках сети установите согласующие резисторы-«терминаторы» номиналом 120 Ом.
При организации сети следует учитывать неявное присутствие третьего проводника – «земли». Ведь все приемопередатчики имеют питание и «землю». Если устройства расположены недалеко от начального источника питания, то разность потенциалов между «землями» устройств в сети невелика и для соединения достаточно одной лишь «витой пары». Но если устройства находятся далеко друг от друга и получают местное питание, то между их «землями» может оказаться существенная разность потенциалов. Возможные последствия: невозможность установления связи, либо плохое её качество, выход из строя приемопередатчика, а то и всего устройства. В таких случаях следует применять дренажный провод. Гальваническая развязка линии и устройств осуществляется опторазвязкой цифровых сигналов с организацией изолированного питания микросхем приемопередатчиков. Вместе с дифференциальными проводниками («витой парой») прокладывается провод изолированной «земли» («сигнальной земли»). Для того, чтобы снять ненужный наведённый потенциал с сигнальной «земли», рекомендуется объединить её с «землёй» питания каждого устройства через какое-нибудь большое сопротивление (от сотен килоом до единиц мегаом). Если использовать меньшее сопротивление, можно свести на нет все преимущества опторазвязанной линии связи.


|